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When the condition of having three equal sides is imposed upon a (convex) spherical
quadrangle, the four angles of that quadrangle cannot longer be freely chosen but must
satisfy an identity. We derive two simple identities of this kind, one involving ratios
of sines, and one involving ratios of tangents, and improve upon an earlier identity
by Ueno and Agaoka.

The simple form of these identities enable us to further investigate the case in which
all of the angles are rational multiples of π and produce a full classification, consisting
of 7 infinite classes and 29 sporadic examples. Apart from being interesting in its own
right, these quadrangles play an important role in the study of spherical tilings by
congruent quadrangles.
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1 Introduction

In general there will be an infinite number of non-congruent spherical quadrangles with given
(ordered) quadruple of angles α, β, γ, δ, provided that 2π < α + β + γ + δ < 6π. By imposing
restrictions on the sides of a quadrangle this is reduced to a finite number. In this paper we
shall investigate the case of a convex quadrangle ABCD with (at least) three equal sides, say
|AB| = |BC| = |CD| = a and derive two simple identities which must be satisfied by the angles
of that quadrangle as a consequence of this restriction (cf. Theorem 1).

A similar, but more complicated identity for this case was already published by Ueno and Agaoka
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Figure 1: Naming conventions for a spherical quadrangle ABCD with three equal sides

in [3]. We shall show that our identities are stronger (cf. Section 2) in a sense to be made clear
below.

The identity of Ueno and Agaoka arose in the search for tilings of the sphere by congruent
quadrangles. In that context it is particularly relevant to consider quadrangles all of whose
angles are rational multiples of π (henceforth simply called rational angles).

Indeed, consider a vertex P of such a tiling. P belongs to a certain number (say NA) of quad-
rangles in the tiling for which P corresponds to vertex A of the quadrangle. Likewise there will
be NB quadrangles for which P corresponds to B, and similar numbers NC , ND for C and D.
Because the sum of all angles in P must be 2π, we find

NAα+NBβ +NCγ +NDδ = 2π, (1)

where α, β, γ, δ are the corresponding angles of the quadrangle (see Figure 1 for naming con-
ventions). A different vertex P ′ of the tiling will lead to a similar identity, but generally with
different values of NA, NB, NC , ND.

We may treat the set of identities (1) that arise from all vertices of a given tiling as a system
of equations with unknowns α, β, γ, δ. Note that all coefficients in these equations are integers,
while every right hand side is equal to 2π. In particular, if this system has rank 4, there will be
exactly one solution and it will consist entirely of rational angles.

In Theorem 4 we give a full classification of all convex spherical quadrangles with three equal
sides whose angles are rational. There turn out to be 7 infinite families of such quadrangles and
29 sporadic examples. The proof of Theorem 4 hinges on the fact that our identity (16) can be
rewritten as an equality between two products of two sines and that instances of such identities
with rational angles were already classified by Myerson [2] (cf. Theorem 3).

2 Relations between the angles

In what follows we shall consider a spherical quadrangle ABCD with corresponding angles
α, β, γ, δ, sides a, a, a, b and diagonals x, y as indicated in Figure 1. The spherical quadran-
gle will be called convex if it satisfies 0 < a, b, x, y, α, β, γ, δ < π. In particular this means that all
constituent spherical triangles ABC, ABD, ACD and BCD are ‘proper’ and satisfy the classical
laws of spherical trigonometry.
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Figure 2: The spherical triangles ABC and ACD.

We take the following inequalities for such quadrangles from [1, Lemma 2.1]

α+ δ < π + β,
α+ δ < π + γ,
α+ β < π + δ,
γ + δ < π + α.

(2)

As mentioned in the introduction, we also have

E = α+ β + γ + δ − 2π > 0, (3)

where E denotes the spherical excess of the quadrangle, which is equal to the area of the quad-
rangle on a unit sphere.

Finally, we note that α = δ if and only if β = γ, cf. [1, Lemma 2.3].

Theorem 1. In a convex spherical quadrangle ABCD with three equal sides, the following iden-
tities hold:

sin(α− γ
2 )

sin γ
2

=
sin(δ − β

2 )

sin β
2

, (4)

or equivalently,
tan

(
δ
2 −

β
2

)
tan δ

2

=
tan

(
α
2 −

γ
2

)
tan α

2

. (5)

Proof. Consider the equilateral spherical triangle ABC. The (polar) cosine rule for side BC
yields

cos a =
cosφ+ cosφ cosβ

sinφ sinβ
= cotφ · 1 + cosβ

sinβ
= cotφ cot

β

2
, (6)

where φ = ∠BAC = ∠ACB as indicated in Figure 2. The sine rules for side AC in both ABC
and ACD, yield

sinβ

sinx
=

sinφ

sin a
,

sin δ

sinx
=

sin(α− φ)

sin a
,

and hence
sin δ

sinβ
=

sin(α− φ)

sinφ
= sinα cotφ− cosα.

Multiplying by cot β2 and using sinβ = 2 cos β2 sin β
2 and (6), yields

sin δ

2 sin2 β
2

= sinα cos a− cosα cot
β

2
,
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whence

cos a =
sin δ + cosα sinβ

2 sinα sin2 β
2

. (7)

By repeating the argument above for triangles ABD and BCD, or equivalently, by interchanging
α↔ δ and β ↔ γ, we find

cos a =
sinα+ cos δ sin γ

2 sin δ sin2 γ
2

. (8)

We shall now use (7–8) to compute

∆
def
= 2 cos a sinα sin δ − sin2 α+ cos2 δ = 2 cos a sinα sin δ + cos2 α− sin2 δ

in two ways. From (7) we obtain

∆ = csc2
β

2
sin2 δ + csc2

β

2
cosα sinβ sin δ + cos2 α− sin2 δ

= (csc2
β

2
− 1) sin2 δ + 2 cot

β

2
cosα sin δ + cos2 α

= cot2
β

2
sin2 δ + 2 cot

β

2
cosα sin δ + cos2 α = (cot

β

2
sin δ + cosα)2.

By symmetry, from (8) we obtain

∆ = (cot
γ

2
sinα+ cos δ)2.

(Note that the original definition of ∆ remains unchanged when interchanging α and δ.) Com-
bining both values of ∆ we end up with two possibilities :

cot
β

2
sin δ + cosα = ±(cot

γ

2
sinα+ cos δ). (9)

We consider both cases separately. The second case will turn out to be impossible.

Case 1. Assume there is a plus sign in the right hand side of (9). Then (9) rewrites to

cot
β

2
sin δ − cos δ = cot

γ

2
sinα− cosα, (10)

which is equivalent to (4).

In general, if x1/y1 = x2/y2, then also (x1 − y1)/(x1 + y1) = (x2 − y2)/(x2 + y2). Applying this
to (4) yields

sin(δ − β
2 )− sin β

2

sin(δ − β
2 ) + sin β

2

=
sin(α− γ

2 )− sin γ
2

sin(α− γ
2 ) + sin γ

2

,

which transforms to
cos δ2 sin( δ2 −

β
2 )

sin δ
2 cos( δ2 −

β
2 )

=
cos α2 sin(α2 −

γ
2 )

sin α
2 cos(α2 −

γ
2 )
,

and hence
tan

(
δ
2 −

β
2

)
tan δ

2

=
tan

(
α
2 −

γ
2

)
tan α

2

.
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Case 2. Assume there is a minus sign in the right hand side of (9), i.e., cot β2 sin δ + cosα =
− cot γ2 sinα−cos δ. This formula can be obtained from the formula for the first case by replacing
α by −α and δ by π − δ. As a consequence, we now have the following identities :

sin(π − δ − β
2 )

sin β
2

=
sin(−α− γ

2 )

sin γ
2

,
tan

(
π
2 −

δ
2 −

β
2

)
tan

(
π
2 −

δ

2

) =
tan

(
− α

2 −
γ
2

)
− tan

α

2

,

equivalent to
sin(δ + β

2 )

sin β
2

= −
sin(α+ γ

2 )

sin γ
2

,
tan δ

2

tan
(
δ
2 + β

2

) =
tan

(
α
2 + γ

2

)
tan α

2

.

Because the tangent function is monotonous in the interval [0, π/2[, the latter is only possible if
β = γ = 0 or if one of 1

2(δ + β), 12(α + γ) lies outside that interval. And because of the signs,
this implies that both values must belong to the interval ]12π, π[. Hence π < α + γ, β + δ. Now
α + β < π + δ by (2). Hence α + β < β + 2δ and hence α < 2δ. By symmetry, also δ < 2α, a
contradiction.

In [3] Ueno and Agaoka derived the following identity for spherical quadrangles with three equal
sides :

(1− cosβ) cosα2 − (1− cosβ)(1− cos γ) cosα cos δ + (1− cos γ) cos δ2

+ cosβ cos γ + sinα sinβ sin γ sin δ − 1 = 0.
(11)

We have

Lemma 2. Formula (11) is equivalent to

cot
β

2
sin δ − cot

γ

2
sinα = ±(cosα− cos δ). (12)

Proof. We express cosβ and sinβ in terms of cot β2 as follows:

sinβ =
2 cot2 β2

cot2 β2 + 1
, cosβ =

cot2 β2 − 1

cot2 β2 + 1
, 1− cosβ =

2

cot2 β2 + 1
(13)

and similar for cos γ and sin γ. Also note that

cosβ cos γ − 1 =
(cot2 β2 − 1)(cot2 γ2 − 1)

(cot2 β2 + 1)(cot2 γ2 + 1)
− 1 =

−2 cot2 β2 − 2 cot2 γ2
(cot2 β2 + 1)(cot2 γ2 + 1)

. (14)

Applying (13–14) to the left hand side of (11) transforms it into

2 cos2 α

cot2 β2 + 1
− 4 cosα cos δ

(cot2 β2 + 1)(cot2 γ2 + 1)
+

2 cos2 δ

cot2 γ2 + 1

−
2 cot2 β2 + 2 cot2 γ2

(cot2 β2 + 1)(cot2 γ2 + 1)
+

4 sinα cot β2 cot γ2 sin δ

(cot2 β2 + 1)(cot2 γ2 + 1)
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which after multiplying by the common denominator and dividing by 2, reduces to

cos2 α(cot2
γ

2
+ 1)− 2 cosα cos δ + cos2 δ(cot2

β

2
+ 1)

− cot2
β

2
− cot2

γ

2
+ 2 sinα cot

β

2
cot

γ

2
sin δ

= cos2 α− 2 cosα cos δ + cos2 δ

+ cos2 α cot2
γ

2
+ cos2 δ cot2

β

2
− cot2

β

2
− cot2

γ

2
+ 2 sinα cot

β

2
cot

γ

2
sin δ

= (cosα− cos δ)2 − (cot
β

2
sin δ − cot

γ

2
sinα)2.

Remark that choosing the minus sign in (12) yields our formula (10) from the proof of Theorem
1. This shows that Theorem 1 is stronger than the result of Ueno and Agaka, as they also allow
solutions with a plus sign in the right hand side of (12).

3 Rational angles

In what follows we shall investigate spherical quadrangles with three equal sides with the addi-
tional property that the four angles α, β, γ, δ are rational. Our main tool is the following theorem
from [2].

Theorem 3 (Myerson). For all θ we have

sin
π

6
sin θ = sin

θ

2
sin(

π

2
− θ

2
). (15)

All other solutions of
sinπx1 sinπx2 = sinπx3 sinπx4 (16)

with rational numbers x1, x2, x3, x4 such that 0 < x1 < x3 ≤ x4 < x2 ≤ 1/2, are given by the
following tables

x1 x2 x3 x4
1/21 8/21 1/14 3/14
1/14 5/14 2/21 5/21
4/21 10/21 3/14 5/14
1/20 9/20 1/15 4/15
2/15 7/15 3/20 7/20
1/30 3/10 1/15 2/15
1/15 7/15 1/10 7/30
1/10 13/30 2/15 4/15

x1 x2 x3 x4
4/15 7/15 3/10 11/30
1/30 11/30 1/10 1/10
7/30 13/30 3/10 3/10
1/15 4/15 1/10 1/6
2/15 8/15 1/6 3/10
1/12 5/12 1/10 3/10
1/10 3/10 1/6 1/6

(17)

Althought our condition (4) is almost a direct match with equations (15) and (16) of the theorem,
there are some additional complications that must be taken into account. Most importantly,
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Theorem 3 imposes extra conditions on the angles πx1, . . . , πx4 which are too stringent for the
angles α− γ

2 ,
β
2 ,

γ
2 , δ −

β
2 of (4).

First, all angles in Theorem 3 must lie in the interval ]0, π/2[ while of the four angles in (4) only
β
2 and γ

2 satisfy this restriction, while the other two (α − γ
2 , δ −

β
2 ) are only known to lie in the

interval ]−π/2, π[. This means that we have to ‘renormalize’ these angles by using the identities

sin(π − πxi) = sinπxi, sin(−πxi) = − sinπxi.

As a consequence, we shall always need to consider the following five cases :

{πx1, πx2, πx3, πx4} = {α− γ
2 ,

β
2 ,

γ
2 , δ −

β
2 }, {π − α+ γ

2 ,
β
2 ,

γ
2 , δ −

β
2 },

{α− γ
2 ,

β
2 ,

γ
2 , π − δ + β

2 }, {π − α+ γ
2 ,

β
2 ,

γ
2 , π − δ + β

2 },
{γ2 − α,

β
2 ,

γ
2 ,

β
2 − δ}.

(18)

(Note that α− γ
2 < 0 automatically implies δ− β

2 < 0 because the signs of both sides of (4) must
be the same.)

Furthermore Theorem 3 assumes a specific ordering of the four variables x1, x2, x3, x4 which again
we cannot guarantee. In principle we must therefore consider eight different ways to assign the
angles on the right hand side of (18) to the angles of the left hand side, yielding 40 possibilities
in total. We can reduce this amount by half by taking into account the symmetry α↔ δ, β ↔ γ.

Finally, Theorem 3 does not consider the ‘trivial’ cases where one (and then at least two) of the
angles is zero, or where {sinπx1, sinπx2} = {sinπx3, sinπx4}.

Taking all of this into consideration leads to

Theorem 4. Consider a convex spherical quadrangle with three equal sides, with angles and sides
as indicated in Figure 1.

If the angles α, β, γ, δ are rational multiples of π, then they must satisfy one of the following
properties, or a property derived from these by interchanging α↔ δ and β ↔ γ.

1. α = γ and β = δ (and all four sides are equal),

2. α = δ and β = γ,

3. α = γ
2 and δ = β

2 , with α+ δ < π,

4. α = 3γ
2 , β = π

3 and δ = 2π
3 −

γ
2 , with

π
2 < γ < 2π

3 .

5. α = π
6 + γ

2 , β = 2γ and δ = π
2 + γ

2 , with
π
3 < γ < π

2 ,

6. α = π
6 + γ

2 , β = 2γ and δ = π
2 + 3γ

2 (= 3α), with 4π
15 < γ < π

3 ,

7. α = π
6 + γ

2 , β = 2π − 2γ and δ = 3π
2 −

3γ
2 , with π

2 < γ < 5π
6 ,

8. (Sporadic cases) α/π, β/π, γ/π, δ/π are as listed in the following tables
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α/π β/π γ/π δ/π

29/42 8/21 3/7 23/42
31/42 8/21 3/7 23/42
5/6 8/21 5/7 17/42

37/42 8/21 5/7 17/42
5/6 3/7 20/21 17/42

11/42 5/7 20/21 1/6
29/42 5/7 20/21 23/42

49/60 4/15 7/10 17/60
53/60 4/15 7/10 17/60
7/10 4/15 13/15 7/30
49/60 3/10 14/15 17/60
23/30 1/3 14/15 3/10
11/15 7/15 3/5 8/15
13/15 7/15 3/5 8/15

α/π β/π γ/π δ/π

17/30 7/15 14/15 3/10
5/6 8/15 3/5 19/30

23/30 8/15 3/5 19/30
5/6 8/15 11/15 17/30
9/10 8/15 11/15 17/30
23/60 8/15 9/10 13/60
31/60 8/15 9/10 19/60
17/30 8/15 13/15 11/30
31/60 3/5 5/6 23/60
11/15 3/5 13/15 8/15
19/30 3/5 14/15 13/30
5/6 3/5 14/15 17/30

19/60 7/10 14/15 13/60
37/60 7/10 14/15 29/60
23/30 11/15 14/15 19/30

(19)

Proof. (The proofs of the inequalities in the statement of the Theorem are left to the reader.
They are immediate consequences of (2–3).)

We split the proof into three parts.

Part 1. We first consider the ‘trivial’ cases. The only angles in (4) which are allowed to be zero,
are α− γ

2 and δ − β
2 . This corresponds to case 3 in the statement of this theorem.

Next, {sinπx1, sinπx2} = {sinπx3, sinπx4} corresponds to either

sin(α− γ

2
) = sin

γ

2
and sin(β − δ

2
) = sin

β

2
, (20)

or

sin(α− γ

2
) = sin(δ − β

2
) and sin

β

2
= sin

γ

2
. (21)

Equation (20) further splits into 4 different cases :

α− γ
2 = γ

2 and δ − β
2 = β

2 ,

α− γ
2 = ±π − γ

2 and δ − β
2 = β

2 ,

α− γ
2 = γ

2 and δ − β
2 = ±π − β

2 ,

α− γ
2 = ±π − γ

2 and δ − β
2 = ±π − β

2 .

The first case corresponds to case 1 in the statement of this theorem, the other three are not
allowed because then α = ±π or β = ±π.

Similarly, equation (21) splits into the following cases :

α− γ
2 = δ − β

2 and β
2 = γ

2 ,

α− γ
2 = ±π − δ + β

2 and β
2 = γ

2 ,

α− γ
2 = δ − β

2 and β
2 = π − γ

2 ,

α− γ
2 = ±π − δ + β

2 and β
2 = π − γ

2 .
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The first of these reduces to α = δ and β = γ, i.e., case 2 in the statement of this theorem. The
second implies β = γ, α+ δ = π+ γ which is disallowed by (2). The third leads to α+π = γ+ δ,
again forbidden by (2). The last yields either α = 2π − δ or α = −δ, which again is not allowed.

Part 2. Let us now consider formula (15). As mentioned above, this formula must be applied
to our problem in 20 different ways, 4 permutations of the angles in (15) each time matched to
the 5 cases listed in (18).

In the tables below, we list each of these 20 possibilities (columns 1–4), and the corresponding
values of α, β, γ, δ (columns 5–8). In each of the four tables, columns 1–4 contain the same values
but correspond to different angles of (15), as indicated in the column headers.

θ π
6

θ
2

π
2 −

θ
2 α β γ δ

α− γ
2

β
2

γ
2 δ − β

2
3θ
2

π
3 θ 2π

3 −
θ
2 α+ · · ·+ δ < 2π

α− γ
2

β
2

γ
2 π − δ + β

2
3θ
2

π
3 θ 2π

3 + θ
2 α+ δ < β + π ⇒ θ < π

3 but
α+ · · ·+ δ > 2π ⇒ θ > π

3

π − α+ γ
2

β
2

γ
2 δ − β

2 π − θ
2

π
3 θ 2π

3 −
θ
2 α+ · · ·+ δ = 2π

π − α+ γ
2

β
2

γ
2 π − δ + β

2 π − θ
2

π
3 θ 2π

3 + θ
2 α+ δ > π + β

γ
2 − α

β
2

γ
2

β
2 − δ − θ

2
π
3 θ −π

3 + θ
2 α < 0

θ π
6

π
2 −

θ
2

θ
2 α β γ δ

α− γ
2

β
2

γ
2 δ − β

2
π
2 + θ

2
π
3 π − θ π

6 + θ
2 α+ · · ·+ δ = 2π

α− γ
2

β
2

γ
2 π − δ + β

2
π
2 + θ

2
π
3 π − θ 7π

6 −
θ
2 α+ δ = π + β

π − α+ γ
2

β
2

γ
2 δ − β

2
3π
2 −

3θ
2

π
3 π − θ π

6 + θ
2

π − α+ γ
2

β
2

γ
2 π − δ + β

2
3π
2 −

3θ
2

π
3 π − θ 7π

6 −
θ
2 α+ δ > π + β

γ
2 − α

β
2

γ
2

β
2 − δ

π
2 −

3θ
2

π
3 π − θ π

6 −
θ
2 α+ · · ·+ δ < 2π

π
6 θ θ

2
π
2 −

θ
2 α β γ δ

α− γ
2

β
2

γ
2 δ − β

2
π
6 + θ

2 2θ θ π
2 + θ

2

α− γ
2

β
2

γ
2 π − δ + β

2
π
6 + θ

2 2θ θ π
2 + 3θ

2

π − α+ γ
2

β
2

γ
2 δ − β

2
5π
6 + θ

2 2θ θ π
2 + θ

2 α+ δ > π + γ

π − α+ γ
2

β
2

γ
2 π − δ + β

2
5π
6 + θ

2 2θ θ π
2 + 3θ

2 α+ δ > π + β
γ
2 − α

β
2

γ
2

β
2 − δ −π

6 + θ
2 2θ θ −π

2 + 3θ
2 α+ · · ·+ δ < 2π

π
6 θ π

2 −
θ
2

θ
2 α β γ δ

α− γ
2

β
2

γ
2 δ − β

2
2π
3 −

θ
2 2θ π − θ 3θ

2

α− γ
2

β
2

γ
2 π − δ + β

2
2π
3 −

θ
2 2θ π − θ π + θ

2 γ + δ > π + α

π − α+ γ
2

β
2

γ
2 δ − β

2
4π
3 −

θ
2 2θ π − θ 3θ

2 α+ β > π + δ

π − α+ γ
2

β
2

γ
2 π − δ + β

2
4π
3 −

θ
2 2θ π − θ π + θ

2 α+ δ > π + γ
γ
2 − α

β
2

γ
2

β
2 − δ

π
3 −

θ
2 2θ π − θ θ

2 α+ · · ·+ δ < 2π

It turns out that 16 of these options are disallowed by the inequalities (2–3). We list the corre-
sponding details in the right hand column of each table. The four possibilities that remain are
listed as cases 4–7 in the statement of the theorem.
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Figure 3: The special case α = γ
2 , δ = β

2 .

Part 3. For the sporadic examples of (17) we could proceed in the same manner as in part 2 of
this proof. Although there are some shortcuts which could be taken to avoid to have to consider
each of the 20× 15 = 300 cases separately, we thought it less error prone to enlist the help of a
computer.

Recall that i sin 2mπ
n belongs to the cyclotomic field Q(ζn) where ζn is a primitive n-th root

of unity. Modern computer algebra systems can do exact arithmetic over such cyclotomic
fields, hence we may use such a system to directly check all instances of equation (4) in which
α, β/2, γ/2, δ are integral multiples of 2π

n and are in the required range. From (17) we may derive
all values of n which we are required to try: for each row let n denote twice the least common
multiple of the four denominators. In fact, many rows will yield the same value of n and it turns
out to be sufficient to do the computations only for n = 84 and n = 120. We used this method
to obtain the values in table (19). (The source code for these computations is available from
http://caagt.ugent.be/ratquad/.)

The same method, with n = 12p, p a prime > 7, was used to verify the results of part 2 of this
proof.

Note that in case 3 of Theorem 4 the quadrangle is a union of three disjoint congruent triangles
with angles α, δ and π/3 — cf. Figure 3.
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